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Abstract

MoNAn (Mobility Network Analysis) is a package for the statistical environment

R that implements the model for the analysis of mobility networks outlined in

Block et al. (2022). The purpose of the package and model is to analyse the

structure of mobility, incorporating exogenous predictors pertaining to individ-

uals and locations known from classical mobility analyses, as well as modelling

emergent mobility patterns akin to structural patterns known from the statis-

tical analysis of social networks.

Since functionality and recommendations are consistently improved, the

manual and the package are frequently updated; please make sure you stay

up-to-date with the latest developments.

Version 3 of the manual is aligned with version 1.1.0 of MoNAn. Note that

there are some important changes in the use of MoNAn compared to version

0.1.3 (Version 1 of the Manual).
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1 General information

The R package MoNAn is an implementation of the statistical model for the analysis

of mobility networks described in Block et al. (2022). It enables researchers to apply

the described model to their own research. When using MoNAn, please remember

it is a software written and maintained by academics. While we perform exten-

sive checks, we cannot guarantee the absence of mistakes and cannot offer full-time

support to users.

User support for the package is consistently built and improved. Currently, the

main resources for using MoNAn are this manual, the help-files in the R package

itself, and the github page, which provides an example script and other resources.

The package homepage, currently hosted here, provides further information about

materials to help using the package, as well as teaching workshops. In case none of

the resources provide the help needed, please contact the package maintainer (Per

Block) at his institutional email address (per.block at uzh.ch).

1.1 Accessing MoNAn

MoNAn is an extension to the statistical environment R (R Core Team, 2023);

thus, it only works within R. RStudio (RStudio Team, 2020) has some useful fea-

tures that facilitate its use. MoNAn is hosted on github and freely available at

github.com/stocnet/MoNAn. To install MoNAn from the github repository, type

the following in your R/RStudio console:

# install.packages("remotes")

remotes::install_github("stocnet/MoNAn")

As of 30 Aug 2023 MoNAn is also available on CRAN. To get the CRAN version,

type the following in your R/RStudio console:

install.packages("MoNAn")

We recommend installing the github version. The advantage of installing MoNAn

from github is that you will always stay up-to-date with the latest developments, in

particular, new functionality and effects.

1.2 Acknowledgements

The initial R functions that form the basis of the package were programmed by

Christoph Stadtfeld and Per Block. Nico Keiser supported transforming the code

into a proper R package. Per Block maintains the package and is responsible for its

development from infancy. Further researchers that contributed to the model and

package development include Marion Hoffman and Garry Robins. Helpful feedback

came from the Duisterbelt group, the Groningen network group, and the Zurich

network group. We are grateful for the support by an ETH fellowship of the ETH

Zurich, and an Eccellenza fellowship of the Swiss National Science Foundation.
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1.3 Referencing MoNAn

When using MoNAn, please reference this manual and underlying model as appro-

priate. The reference to this manual is:

Block, P., Keiser, N. (2023). Manual for MoNAn in R. Zurich: University of Zurich,

Department of Sociology. doi:10.31235/osf.io/8q2xu

The model is introduced in:

Block, P., Stadtfeld, C., and Robins, G. (2022). A statistical model for the anal-

ysis of mobility tables as weighted networks with an application to faculty hiring

networks. Social Networks, 68, 264–278.
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2 Model overview

2.1 Intuition

This section gives a cursory overview of the statistical model underlying MoNAn.

For a more comprehensive treatment, please refer to Block et al. (2022).

The purpose of the model to analyse mobility networks is to understand what

regularities are present in the mobility of individuals between locations. Found regu-

larities tend to be interpreted in terms of individual actions, representing preferences

and constraints that determine mobility.

Regularities that can be modelled include exogenous and endogenous predictors.

Exogenous predictors relate to the match of individual and location characteristics.

Two of the most relevant examples for exogenous predictors are that (i) individuals

with certain characteristics move to certain types of locations, and (ii) mobility tends

to be present between locations that share, or are similar on some characteristic.

Endogenous predictors describe (network-like) structures of mobility. Such struc-

tures are composed of multiple observations and, as such, represent the inter -

dependence of mobility of different individuals. A prominent example of such en-

dogenous structures is reciprocation, that is, some measure of how much the extent

of mobility from location a1 to location a2 correlates with the extent of mobility

from location a2 to location a1.

The distinguishing feature of this model for mobility networks is its ability to

represent endogenous predictors, which is impossible in many standard statistical

models, as it systemically violates the assumption of independent observations. Nev-

ertheless, the model is in the tradition of classical log-linear models for mobility

tables. In fact, when no endogenous predictors are included, it reduces to such a

standard mobility model. At the same time, the model draws heavily from insights

of statistical network models, in particular the Exponential Random Graph Model

(ERGM) (Lusher et al., 2013). In case no characteristics describing individuals are

used, the mobility network model can be seen as an ERGM for weighted networks

of count data with exogenously given row marginals.

2.2 Mathematical formulation

2.2.1 Notation

The following notation is used in this manual, adopted from Block et al. (2022).

• A: Origins and destinations in a mobility network are defined by n locations

A = (a1, a2, ..., an).

• B: Between the locations, r individuals B = (b1, b2, ..., br) are mobile.

• We refer to A and B as Nodesets in the implementation of the model.

Locations and individuals can have exogenous attributes.
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• v: Monadic covariates of locations are denoted v.

• u: Dyadic covariates describing exogenous relations between locations are de-

noted u.

• w: Monodic covariates of individuals are denoted w.

The state of the mobility network is defined by two vectors

• o: An origin vector o ∈ {1, ..., n}r, in which oi = j if node aj is the origin of

individual i.

• d: A destination vector d ∈ {1, ..., n}r, in which di = h if node ah is the

destination of individual i.

The vectors o and d jointly form an edgelist that determines the mobility of the

resources.

• x: The variables A,B, v, w, o and d fully define a mobility network, for which

we use the shorthand notation x.

• This shorthand notation when used with indices xjh refers to the number of

individuals moving from location j to location h.

2.2.2 The model

We describe any observed or potentially observable mobility network x by so-called

statistics s(x). These statistics are often counts of occurrences of specific types of

configurations, e.g., how many individuals move between locations identical on some

covariate (exogenous), or how how many transitions from location a2 to location a1
co-occur for a transition from a1 to a2 (endogenous). These statistics have the

function of independent variables in the model1. In the implementation in MoNAn,

these statistics are referred to as effects (see Section 5).

Since o, v, w,A and B are exogenously given in the model, variation in the values

of the statistics for different realisations of x come from different realisations of d.

Thus, we can define statistics as follows:

s(x) = f(d|o, v, w,A,B). (1)

A list of diverse statistics is presented in Section 5.2. Jointly with a statistical

parameter θ, a set of statistics s(x) defines the quality function Q(x) as a linear

predictor:

Q(x) =
∑
k

θksk(x), (2)

1In case of exogenous statistics, they are identical to independent variables of standard regression
models.
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In case of a positive (negative) θk, the value of the quality function increases (de-

creases) with a higher count of the statistic sk(x).

For a given θ, we define the probability to observe any possible realisation of a

a mobility network as follows:

Pr(X = x) =
exp(Q(x))

κ
, (3)

where κ is a normalising constant that depends on C, which is the set of all possible

configurations that a mobility network x can take (i.e., any possible realisation of

d):

κ =
∑
x′∈C

exp(Q(x′)). (4)

The intuition behind the model is that mobility networks with higher counts

of statistics that are associated with a positive θ are more likely to be observed.

In practise, however, we do not start from a set of θ’s and are interested in the

probability to observe different realisations of x. Instead, we tend to start from an

observed mobility network and are interested in estimating θ’s based on the data.

The estimated values give an indication whether the associated statistic is present

in the data more than expected ‘by chance’.2 Such over- or under-representation is

the basis for interpretation that can shed light on the processes that brought about

the observed mobility network.

2The meaning of ‘by chance’ is left purposefully vague, as it requires a deeper treatment than
this introduction wants to provide.
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3 Using the manual

This manual provides comprehensive guidance to using MoNAn beyond what is avail-

able from the help-files within the R library.

A high level overview of how the different functions in MoNAn are connected

is provided in Figure 1. This flow-chart shows the steps a user must take to get

from raw data (yellow rounded rectangles at the top of the page) to a completed

estimation (blue rectangle called ‘myResDN’) and possibly beyond. All functions of

the package and how they fit in the analysis work-flow are included in Figure 1.

The use of each function is documented in this manual. Especially more compli-

cated functions (like monanAlgorithmCreate with many optional parameters), and

functions that are involved in their use (like addEffects that makes use of further

effect functions in its specification) are explained in detail.

Each function covered in the manual is – as far as necessary – explained theo-

retically, and subsequently linked to the example illustrating its use. The examples

are identical to the ones specified in the MoNAnExampleScript.R and the README,

both available on the MoNAn github page.

3.1 Example data

To illustrate the package use in the MoNAn documentation, exemplary input data in

standard R format (mobilityData) and outcome objects (myOutcomeObjects) are

provided in the package.

The raw example data is synthetic (i.e., made up). This fictitious example con-

tains 17 organisations representing a labour market that are located in two regions

(north and south). 742 workers are employed in these organisations at two time-

points. Some are mobile while others work in the same organisation at both time-

points.

Organisational membership of where each worker is working at time 1 and at

time 2 is stored in the object mobilityEdgelist. The workers’ sex represents an

individual characteristic stored in indSex. Each organisation’s size (orgSize) and

location (orgRegion) are included as continuous and categorical characteristics of

locations, respectively. The former represents a composite measure of the organisa-

tions’ assets and revenue.

For reference (and to save time), example outcome objects (myOutcomeObjects)

of the package’s main functions are stored. The data can be accessed as follows:

?mobilityData

# load raw data objects

data(‘mobilityEdgelist’’)

# overview of the outcome objects

?myOutcomeObjects

9
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mobility data

mobility edgelist
(edgelist.monan)

individual
characteristiclocation characteristic

monanDependent monanEdges

monanDataCreate

individuals
(nodeset.monan)

dyadic location covar
(network.monan)

locations
(nodeset.monan)

location covar
(nodeVar.monan)

individual covar
(nodeVar.monan)

monanNodes monadicCovar monadicCovar

dyadic location
characteristic

dyadicCovar

myState
(processState.monan)

getMultinomial-
Statistics

monanAlgorithm-
Create

myEffects
(effectsList.monan)

myAlg
(algorithm.monan)

monanEstimate

myResDN
(result.monan)

myStatisticsFrame
(data.frame) pre-estimation

autoCorrelationTest extractTracesscoreTest

createEffects[gofFunction] myEffects2
(effectsList.monan)

monanGOF

monanSimulate

addEffect

mySimDN
(sims.monan)

createEffects

addEffect

optional
prevAns

Figure 1: Schematic overview of MoNAn functions and objects
Yellow rounded rectangles indicate raw data imported to MoNAn, green diamonds
represent MoNAn functions, blue rectangles are MoNAn data objects. Arrows indi-
cate the input needed for a function and the outcome objects created by functions;
e.g. to obtain the results of an estimation (called myResDN in the flowchart), the
function monanEstimate needs to be executed, which in turn requires a state (myS-
tate), effects (myEffects), and an algorithm (myAlg) – optionally, the results of a
pre-estimation or a previous estimation can be used as input.
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4 Data

This section outlines how to transform raw data into a format that MoNAn uses

internally, and how to combine this into a process state. It is assumed that the user

already imported all data into R and it is present in base R format (i.e., as a series

of data.frames, matrices, and/or vectors).

4.1 Input data

For any MoNAn analysis, it is necessary to specify nodesets, i.e., who is mobile

between what locations, and a mobility edgelist, representing the mobility network

under analysis. In Figure 1, this is referenced on the top left in the arrows originating

from the yellow rounded rectangle ‘mobility data’. Additionally, monadic or dyadic

covariates of individuals and locations can be specified. Their inclusion is optional.

In Figure 1, they are depicted on the top right.

4.1.1 Defining the units of analysis: Nodesets

The locations and individuals that make up the mobility network need to be specified

and named. Typical nodesets denoting locations are ‘organisations’ or ‘occupations’;

these are specified using the function monanNodes. Typical nodesets of individuals

are ‘workers’ or simply ‘people’; these are specified using the function monanEdges.

The use of both functions is identical.

Function names: monanEdges and monanNodes

Arguments:

• x. necessary. The size of the nodeset, i.e., the number or organisations or

individuals in the data.

• considerWhenSampling. optional. Only for use in special cases. A boolean/

logical vector of the length of the nodeset. If the nodeset indicates a location,

considerWhenSampling indicates whether the location is a possible destina-

tion, or is only an origin (e.g., a training facility). Entries in the vector of

locations that cannot be a destination are FALSE. If the nodeset indicates

mobile individuals, considerWhenSampling indicates whether their mobility

should be modelled or whether it is structurally determined, that is, their mo-

bility is exogenously defined and does not follow the same logic as the mobility

of everybody else.

Usage:

# extract number of ind. and org. from the mobility data

N_ind <- nrow(mobilityEdgelist)

N_org <- length(unique(as.numeric(mobilityEdgelist)))
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# create monan nodesets

people <- monanEdges(x = N_ind)

organisations <- monanNodes(x = N_org)

4.1.2 The dependent variable: Edgelist

The mobility network itself is specified by an edgelist, that is, a list of the origin and

destination of each individual in the data. The names of the nodesets that make

up the mobility network are used in the specification of the edgelist. The name of

the edgelist as determined by the user will be used later to reference the dependent

variable.

Function name: monanDependent

Arguments:

• el. necessary. The mobility data in the format of an edgelist. An edgelist is a

matrix (or data.frame) containing 2 columns and as many rows as individuals.

The first column indicates the origin of a person/resource, the second row the

destination.

• nodes. necessary. This references the names of the nodes, i.e., locations.

• edges. necessary. This references the names of the edges, i.e., individuals.

Usage:

transfers <- monanDependent(mobilityEdgelist,

nodes = "organisations",

edges = "people")

4.1.3 Predictor variables: Monadic covariates

Monadic covariates describe attributes of locations and/or individuals that are meant

to be used in the estimation of the model. Examples for attributes of organisations

as examples of locations are their size (continuous) or region (categorical). Examples

of individual attributes include sex (categorical) or age (continuous).

In the creation of covariates in the process of a MoNAn analysis, in some cases it

is necessary to have the later model specification in mind. This is the case if there

are more than 500 locations. In case the covariates describe locations and are later

meant to be used to represent homophily, the additional parameters addSame for

categorical or addSim for continuous covariates need to be set to TRUE. However, if

there are less than 500 locations, addSim and addSame are included automatically.

The reasons for this are the way MoNAn calculates effects internally. Note that it

is not recommended to include addSame or addSim by default, since it slows the

estimation down.
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Function name: monadicCovar

Arguments:

• values. necessary. A vector that contains the covariate values of each element

of the nodeset. The ordering of the covariate values for individuals must be

identical to the ordering in the edgelist that specifies the mobility network.

• nodes. necessary unless edges specified. The nodes to which the covariate

applies for location characteristics.

• edges. necessary unless nodes specified. The edges to which the covariate

applies for individual characteristics.

• addSame. optional. Are there more than 500 locations and will the variable be

used to model categorical homophily (e.g., with the same covariate effect)?

In this case, addSame needs to be set to TRUE.

• addSim. optional. Are there more than 500 locations and will the variable be

used to model continuous homophily (e.g., with the sim covariate effect)? In

this case, addSim needs to be set to TRUE.

Usage:

region <- monadicCovar(values = orgRegion,

nodes = "organisations")

size <- monadicCovar(values = orgSize,

nodes = "organisations")

sex <- monadicCovar(values = indSex,

edges = "people")

4.1.4 Predictor variables: Dyadic covariates

Dyadic covariates specify exogenously determined relations between the locations of

the data. Examples of such dyadic covariates for the case of organisations can be

their geographical distance, co-ownership, or other formal contractual ties between

organisations.

Function name: dyadicCovar

Arguments:

• m. necessary. A square matrix containing the network data.

• nodes. necessary. Which nodeset are the nodes of the dyadic covariate. Usu-

ally this will be the locations in the data.

Usage:

13



sameRegion <- outer(orgRegion, orgRegion, "==") * 1

sameRegion <- dyadicCovar(m = sameRegion,

nodes = "organisations")

4.2 The process state

Once all data that will be used in an analysis (the mobility edgelist, the nodesets, and

all covariates) are specified according to the functions above, this data is combined

into the process state. The process state is a data object that is used by MoNAn in

the estimation, simulation, etc. In other words, it is the internal format MoNAn uses

to deal with data. From here on, MoNAn will not access any of the raw data stored

in an R environment. This means that any changes in the raw data necessitates

re-running the data create functions from Section 4.1 and re-creating the process

state.

Creating a data object – the process state – by the user means a MoNAn analysis

requires more steps than, e.g., a linear regression, which directly accesses, e.g., a data

frame. The reason to create a dedicatedMoNAn data object is that it breaks running

a MoNAn analysis into manageable steps that can be performed and debugged one-

by-one.

Function name: monanDataCreate

Arguments:

• .... necessary. The outcome variable (edgelist), the nodesets, and all co-

variates that contain the information about the data that will be used in the

estimation.

Usage:

myState <- monanDataCreate(transfers,

people,

organisations,

sameRegion,

region,

size,

sex)

myState

The process state has a dedicated print function to inspect the data that is

included in a current process state.
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5 Model specification

Model specification in the mobility network model and, accordingly, MoNAn is not

trivial. While the choice of exogenous statistics/effects is straight-forward and mir-

rors that of standard log-linear models for mobility, the choice of endogenous statis-

tics is less researched. Users are recommended to take substantive considerations

and previous network literature into account. Some more thoughts on model speci-

fications are elaborated in Section 5.3.

5.1 The effects object

The model is specified in an effects object. This unusual name is chosen, because

the predictors of the models are called ‘effects’. The core of an effects object are

effect functions. These effect functions are in fact proper R functions that are called

internally when the effects object is created. Thus, the ‘tab’ button can be used to

complete effect names in an R script.

A model is specified in two steps, first an effects object is created and, second,

effects are added one by one to this object. The use of pipes (|>) comes in handy

at this stage.

Function name: createEffects

Arguments:

• state. necessary. The state that will be modelled with this effects object.

Usage:

myEffects <- createEffects(myState)

Each effect to be included is added one by one using the function addEffect

including its name and and potentially the location/individual attributes to which

it refers. Attributes are called ‘node.attribute’ or ‘edge.attribute’ in model specifi-

cations of MoNAn.

Function name: addEffect

Arguments:

• effectsObject. necessary. The effects object to which new effects are added.

• effectName. necessary. The name of the additional effect.

• .... optional. As needed the node.attribute, edge.attribute, or parameter.

Usage:
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myEffects <- addEffect(myEffects, myEffects, reciprocity_min)

myEffects <- addEffect(myEffects, dyadic_covariate,

node.attribute = "sameRegion")

myEffects <- addEffect(myEffects, loops_resource_covar,

edge.attribute = "sex")

# together with createEffects and pipes, this can be simplified as

myEffects <- createEffects(myState) |>

addEffect(reciprocity_min) |>

addEffect(dyadic_covariate, node.attribute = "sameRegion") |>

addEffect(loops_resource_covar, edge.attribute = "sex")

myEffects

Effects objects have dedicated print functions to inspect the specification of a

given effects object.

5.2 Implemented effects

MoNAn comes with a set of implemented effects that represent the most common

predictors of mobility network evolution. The set of implemented effects is consis-

tently expanded; experienced R users might want to program additional effects. Such

effects can be directly used if the effects functions are in the global R environment.

The list in the following subsections introduces all effects by its name, a brief

description, its mathematical formula and its internal MoNAn name and usage. The

mathematical formulation uses the notation introduced in Section 2.2.1. The usage

is shown taking the attribute names from the example data.

5.2.1 Exogenous effects

1.1 Name: alter covariate

Description: Are locations higher on some attribute v more popular targets of

mobility? E.g., do workers have a tendency to move to larger organisations?

Formula:

s(x) =
∑
i∈B

vdi . (5)

Usage:

myEffects <- addEffect(myEffects, alter_covariate,

node.attribute = "size")
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1.2 Name: same covariate

Description: Is mobility more likely between locations that are identical on

some attribute v? E.g., is mobility more likely between organisations that are

located in the same region?

Formula:

s(x) =
∑
i∈B

I(voi = vdi), (6)

where I is an indicator function that takes the value 1 in case the condition in

parentheses is true and 0 otherwise.

Usage:

myEffects <- addEffect(myEffects, same_covariate,

node.attribute = "region")

1.3 Name: covariate similarity

Description: Is mobility more likely between locations that are similar on some

attribute v? E.g., is mobility more likely between organisations that have a

similar size?

Formula:

s(x) =
∑
i∈B

1− |voi − vdi |
∆

, (7)

where ∆ is the maximum difference between covariates v of any pair of loca-

tions. This normalises the similarity between two locations to a value between

0 and 1.

Usage:

myEffects <- addEffect(myEffects, sim_covariate,

node.attribute = "size")

1.4 Name: dyadic covariate

Description: Is mobility between locations predicted by the dyadic covariate

u? E.g., is mobility likely between organisations that are in the same region?

Note that in many cases dyadic covariates can convey the same information as

the ‘same covariate’ or the ‘covariate similarity’ effects.

Formula:

s(x) =
∑
i∈B

uoidi , (8)

Usage:
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myEffects <- addEffect(myEffects, dyadic_covariate,

node.attribute = "sameRegion")

1.5 Name: dyadic covariate * individual attribute

Description: Is mobility between locations predicted by the dyadic covariate u

weighted by the individual covariate w? E.g., is mobility of women more likely

between organisations that are in the same region?

Note that this effect can be used to also model the interaction between the ‘same

covariate’/‘covariate similarity’ effect and individual attributes, since sameness

and similarity between locations can be translated into dyadic covariates.

Formula:

s(x) =
∑
i∈B

uoidiwi. (9)

Usage:

myEffects <- addEffect(myEffects,

dyadic_covariate_resource_attribute,

node.attribute = "sameRegion",

edge.attribute = "sex")

1.6 Name: alter covariate * individual attribute

Description: Do individuals with some individual attribute w tend to move to

locations with some location characteristic v? E.g., do women move to larger

organisations than men?

Formula:

s(x) =
∑
i∈B

vdiwi. (10)

Usage:

myEffects <- addEffect(myEffects,

resource_covar_to_node_covar,

node.attribute = "size",

edge.attribute = "sex")

5.2.2 Endogenous effects

2.1 Name: loops

Description: Do individuals stay in their location of origin, compared to going

to a different location?
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Formula:

s(x) =
∑
i∈B

I(oi = di)

=
∑
j∈A

xjj ,
(11)

where I is an indicator function that takes the value 1 in case the condition in

parentheses is true and 0 otherwise. Note that here the matrix representation

xjj is used for the first time.

Usage:

myEffects <- addEffect(myEffects, loops)

2.2 Name: geometrically weighted loops

Description: Do individuals stay in their current location, in case many other

from their current location also stay? This effect tests whether the ‘benefit’

of staying in the origin location depends on the number of others also staying.

Note that this effect should be modelled alongside the loops effect.

Formula:

s(x) =
∑
j∈A

gcum gw(xjj), (12)

where

gcum gw(y) =

y∑
k=1

(y − k)e−log(α)k. (13)

The user-defined parameter α guides the decay in the additional contribution

of a further count of y. For α = 1, gcum gw(y) = y(y−1)/2, for larger values the

increase in gcum gw(y) approaches linearity for higher values of y. For very large

values of α, gcum gw(y) ∼ y for y ≥ 1. The default value for α is 2, meaning

that each additional count on y contributes as much as the previous count, plus

half the difference between the previous and pre-previous count (for y > 2).

In other words, the growth in the contribution to the statistic by each count

decreases by factor 2.

For a deeper introduction of geometrically weighted effects, see Snijders et al.

(2006). Geometrically weighted effects and alternating clique effects (see below)

are very similar in their model behaviour; however, the alternating clique effects

have properties that make them slightly easier to interpret. Note that the

interpretation of α differs between these effects. In geometrically weighted

effects, smaller values approaching 1 place more importance on higher counts,

while in alternating clique effects, larger values place more importance on higher

counts.
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Usage:

myEffects <- addEffect(myEffects, loops_GW)

2.3 Name: loops by alternating cliques

Description: Do individuals stay in their current location, in case many other

from their current location also stay? This effect tests whether the ‘benefit’

of staying in the origin location depends on the number of others also staying.

Note that this effect should be modelled alongside the loops effect.

Formula:

s(x) =
∑
j∈A

gcum ac(xjj), (14)

where

gcum ac(y) =

y−1∑
k=1

(
1− (1− 1

α
)k
)
. (15)

The user-defined parameter α determines the additional contribution of a fur-

ther count of y. Every additional k-th actor on the loop adds a contribution of

(1− (1− 1
α)

k), which is below 1 but gets increasingly closer to 1 as k increases.

Simply put, on very crowded loops (where xj,j ≫ α) every additional actor

contributes 1, while the contribution on less crowded paths decreases.

For α = 1, gcum ac(y) = y−1, meaning every count beyond the first contributes

1 to the statistic. For larger values of α the increase in gcum gw(y) approaches

1 for higher values of y.

The default value for α is 2, meaning that each additional count on y contributes

as much as the previous count, plus half the difference between the previous and

pre-previous count (for y > 2). In other words, the growth in the contribution

to the statistic by each count decreases by factor 2.

For a deeper introduction of alternating clique effects, see Snijders et al. (2006).

Geometrically weighted effects (see above) and alternating clique effects are

very similar in their model behaviour; however, the alternating clique effects

have properties that make them slightly easier to interpret. Note that the

interpretation of α differs between these effects. In geometrically weighted

effects, smaller values approaching 1 place more importance on higher counts,

while in alternating clique effects, larger values place more importance on higher

counts.

Usage:

myEffects <- addEffect(myEffects, loops_AC)

2.4 Name: loops by additional origin
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Description: In cases when individuals have more than one origin (for example

in intergenerational occupational mobility, when people have two parents), this

implements the loops effect for a second origin coded as an individual covariate.

Formula:

s(x) =
∑
i∈B

I(wi = di) (16)

where I is an indicator function that takes the value 1 in case the condition in

parentheses is true and 0 otherwise.

Usage:

myEffects <- addEffect(myEffects,

loops_additional_origin,

edge.attribute = "second_or")

2.5 Name: loops x loops by additional origin

Description: In cases when individuals have more than one origin (for example

in intergenerational occupational mobility, when people have two parents), this

implements the loops effect for a second origin coded as an individual covariate,

interacted with the loops effects, i.e., the effect of both origins being identical

on staying in the same location.

Formula:

s(x) =
∑
i∈B

I(wi = oi = di) (17)

where I is an indicator function that takes the value 1 in case the condition in

parentheses is true and 0 otherwise.

Usage:

myEffects <- addEffect(myEffects,

loops_x_loops_additional_origin,

edge.attribute = "second_or")

2.6 Name: concentration

Description: Is there a bandwagon effect in mobility, i.e., do mobile individuals

move to locations that are the destination of many others from their origin?

Formula:

s(x) =
∑

j ̸=h∈A
x2
jh, (18)

Note: This effect models a quadratically increasing benefit to more individuals

on the same path – this is prone to degeneracy! In many cases, the geometri-
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cally weighted or alternating cliqueconcentration effect might be a better

modelling choice.

Usage:

myEffects <- addEffect(myEffects, concentration_basic)

2.7 Name: concentration squared

Description: Is there a bandwagon effect in mobility, i.e., do mobile individuals

move to locations that are the destination of many others from their origin, and

is there a non-linear relation between more individuals on the same path and

attractiveness for further individuals?

Formula:

s(x) =
∑

j ̸=h∈A
x2
jhx

2
jh, (19)

Note: This effect models the square of a quadratically increasing benefit to

more individuals on the same path – this is likely to be negative and can only

be interpreted properly together with the basic concentration effect. Its usage

is to avoid degeneracy in the main concentration effect.

Usage:

myEffects <- addEffect(myEffects, concentration_basic_squared)

2.8 Name: geometrically weighted concentration

Description: Is there a bandwagon effect in mobility, i.e., do mobile individuals

move to locations that are the destination of many others from their origin? The

functional form of this statistic assumes that there are decreasing additional

returns to more others on the same mobility path. For example, the probability

to choose a mobility path that already contains 20 other individuals is hardly

different from a path with 25 other individuals; however, there is a substantial

difference in the comparison of paths with 2 or 7 other individuals.

Formula:

s(x) =
∑

j ̸=h∈A
gcum gw(xjh), (20)

with gcum gw(y) defined as in equation 13.

For a deeper introduction of geometrically weighted effects, see Snijders et al.

(2006). Geometrically weighted effects and alternating clique effects (see below)

are very similar in their model behaviour; however, the alternating clique effects

have properties that make them slightly easier to interpret. Note that the

interpretation of α differs between these effects. In geometrically weighted

effects, smaller values approaching 1 place more importance on higher counts,

22



while in alternating clique effects, larger values place more importance on higher

counts.

Usage:

myEffects <- addEffect(myEffects, concentration_GW)

2.9 Name: concentration by alternating cliques

Description: Is there a bandwagon effect in mobility, i.e., do mobile individuals

move to locations that are the destination of many others from their origin? The

functional form of this statistic assumes that there are decreasing additional

returns to more others on the same mobility path. For example, the probability

to choose a mobility path that already contains 20 other individuals is hardly

different from a path with 25 other individuals; however, there is a substantial

difference in the comparison of paths with 2 or 7 other individuals.

Formula:

s(x) =
∑

j ̸=h∈A
gcum ac(xjh), (21)

where

with gcum ac(y) defined as in equation 15.

For a deeper introduction of alternating clique effects, see Snijders et al. (2006).

Geometrically weighted effects and alternating clique effects are very similar in

their model behaviour; however, the alternating clique effects have properties

that make them slightly easier to interpret. Note that the interpretation of α

differs between these effects. In geometrically weighted effects, smaller values

approaching 1 place more importance on higher counts, while in alternating

clique effects, larger values place more importance on higher counts.

Usage:

myEffects <- addEffect(myEffects, concentration_AC)

2.10 Name: reciprocity

Description: Do individuals move to destinations dependent on the number of

individuals that move to ego’s origin from that destination?

Formula:

s(x) =
∑

j<h∈A
xjhxhj , (22)

Note that this effect is prone to near-degeneracy. Using the geometrically

weighted or alternating clique reciprocity effect might be a better idea in

many cases.

Usage:
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myEffects <- addEffect(myEffects, reciprocity_basic)

2.11 Name: geometrically weighted reciprocity

Description: Do individuals move to destinations that send many individuals

to ego’s origin? The number of incoming individuals has decreasing returns,

that is, every additionally incoming individual influences ego’s choice less.

Formula:

s(x) =
∑

j ̸=h∈A
xjh gmar gw(xhj), (23)

where

gmar gw(y) = −1 +

y∑
k=0

e−log(α)k. (24)

The user-defined parameter α has the same function as defined in equation 13.

The default value for α is 2, meaning that each additional count on y contributes

half as much as the previous count (for y > 0). Thus with increasing y, s(x)

approaches xjh

For a deeper introduction of geometrically weighted effects, see Snijders et al.

(2006). Geometrically weighted effects and alternating clique (see below) effects

are very similar in their model behaviour; however, the alternating clique effects

have properties that make them slightly easier to interpret. Note that the

interpretation of α differs between these effects. In geometrically weighted

effects, smaller values approaching 1 place more importance on higher counts,

while in alternating clique effects, larger values place more importance on higher

counts.

Usage:

myEffects <- addEffect(myEffects, reciprocity_GW)

2.12 Name: reciprocity by alternating cliques

Description: Do individuals move to destinations that send many individuals

to ego’s origin? The number of incoming individuals has decreasing returns,

that is, every additionally incoming individual influences ego’s choice less.

Formula:

s(x) =
∑

j ̸=h∈A
xjh gmar ac(xhj), (25)

where

gmar ac(y) = (1− (1− 1

α
)y. (26)
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The user-defined parameter α has the same function as in equation (15).

For a deeper introduction of alternating clique effects, see Snijders et al. (2006).

Geometrically weighted (see above) effects and alternating clique effects are

very similar in their model behaviour; however, the alternating clique effects

have properties that make them slightly easier to interpret. Note that the

interpretation of α differs between these effects. In geometrically weighted

effects, smaller values approaching 1 place more importance on higher counts,

while in alternating clique effects, larger values place more importance on higher

counts.

Usage:

myEffects <- addEffect(myEffects, reciprocity_AC)

2.13 Name: minimum reciprocity

Description: Do individuals move to destinations that send more individuals

to ego’s origin? This version of the effect is the minimum of the moves in

either direction, thereby guarding against degeneracy and guaranteeing sample

size consistency. It counts the ‘raw’ number of reciprocated transitions in the

mobility network.

Formula:

s(x) =
∑

j<h∈A
min(xjh,xhj). (27)

Usage:

myEffects <- addEffect(myEffects, reciprocity_min)

2.14 Name: basic transitivity

Description: Is mobility clustered in groups? Among the three nodes j, h, l,

this is represented by the product of the ties j → h, j → l, and h → l.

Formula:

s(x) =
∑

j<h<l∈A
xjhxjlxhl (28)

Note that this will almost always be degenerate. Using the geometrically

weighted or alternating clique version of the effect will often be better.

Usage:

myEffects <- addEffect(myEffects, transitivity_basic)

2.15 Name: geometrically weighted transitivity
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Description: Is mobility clustered in groups? This is represented by mobility

closing two-paths that exist between j and l, where the total number of two-

paths is geometrically weighted.

Formula:

s(x) =
∑

j<l∈A
xjl gmar gw(

∑
h∈A

xjhxhl) (29)

where gmar gw is defined as in equation 24.

For a deeper introduction of geometrically weighted effects, see Snijders et al.

(2006). Geometrically weighted effects and alternating clique (see below) effects

are very similar in their model behaviour; however, the alternating clique effects

have properties that make them slightly easier to interpret. Note that the

interpretation of α differs between these effects. In geometrically weighted

effects, smaller values approaching 1 place more importance on higher counts,

while in alternating clique effects, larger values place more importance on higher

counts.

Usage:

myEffects <- addEffect(myEffects, transitivity_GW, alpha = 1.1)

2.16 Name: transitivity by alternating cliques

Description: Is mobility clustered in groups? This is represented by mobility

closing two-paths that exist between j and l, where the importance of total

number of two-paths decreases.

Formula:

s(x) =
∑

j<l∈A
xjl gmar ac(

∑
h∈A

xjhxhl) (30)

where with gmar ac(y) defined as in equation 26.

For a deeper introduction of alternating clique effects, see Snijders et al. (2006).

Geometrically weighted (see above) effects and alternating clique effects are

very similar in their model behaviour; however, the alternating clique effects

have properties that make them slightly easier to interpret. Note that the

interpretation of α differs between these effects. In geometrically weighted

effects, smaller values approaching 1 place more importance on higher counts,

while in alternating clique effects, larger values place more importance on higher

counts.

Usage:

myEffects <- addEffect(myEffects, transitivity_AC, alpha = 10)

2.17 Name: minimum transitivity
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Description: Is mobility clustered in groups? This is represented by the min-

imum of reciprocated mobility being present among three nodes. Using the

minimum ensures that the effect is not degenerate and it is sample size consis-

tent.

Formula:

s(x) =
∑

j<h<l∈A
min(xjh,xhj ,xjl,xlj ,xlh,xhl). (31)

Usage:

myEffects <- addEffect(myEffects, transitivity_min)

2.18 Name: netflow transitivity

Description: Do individuals move in one direction in locally ordered triads?

E.g., is there a local hierarchy that individuals follow when moving between

locations? The effect is sample size consistent.

Formula:

s(x) =
∑

j ̸=h̸=l∈A
min(xj⇒h,xj⇒l,xh⇒l). (32)

with xi⇒j indicating the netflow from i to j defined as

xj⇒h = max(0,xjh − xhj). (33)

Usage:

myEffects <- addEffect(myEffects, transitivity_netflow)

2.19 Name: present relations

Description: Do individuals move along many or few paths out of their origin?

This models whether individuals have a tendency against being the only one

moving to a particular destination from their origin.

Formula:

s(x) =
∑

j ̸=h∈A
I(xjh > 0). (34)

Usage:

myEffects <- addEffect(myEffects, present_relations)

2.20 Name: loops by indegree

Description: Are individuals that are in locations with a large inflow more

likely to stay in their current location?
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Formula:

s(x) =
∑

j ̸=h∈A
xhjxjj

=
∑
j∈A

x+jxjj ,
(35)

Usage:

myEffects <- addEffect(myEffects, in_ties_loops)

2.21 Name: indegree concentration exponent

Description: Is there a preferential attachment in the mobility network, i.e.,

do individuals move particularly to popular destinations?

Formula:

s(x) =
∑
j∈A

(x+j)
α, (36)

For a value of α = 2, the effect is akin to the in-two-star statistic in ERGMs.

Usage:

myEffects <- addEffect(myEffects, in_weights_exponent)

5.2.3 Mixed effects

3.1 Name: loops by location covariate

Description: Are locations with specific attributes ‘stickier’ than others, i.e.,

do individuals have a higher propensity to stay in some locations? E.g., are

individuals working in organisations in one region less likely to change their

employer?

Formula:

s(x) =
∑
j∈A

vjxjj (37)

Usage:

myEffects <- addEffect(myEffects, loops_node_covar,

node.attribute = "region")

3.2 Name: loops by individual covariate

Description: Are individuals with certain characteristics more likely to remain

in their current location? For example, are men more likely to remain in their

current organisation, while women are more likely to move employer?
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Formula:

s(x) =
∑
i∈B

wiI(oi = di) (38)

Usage:

myEffects <- addEffect(myEffects, loops_resource_covar,

edge.attribute = "sex")

3.3 Name: loops by location and individual covariate

Description: This is an interaction of the previous two effects: Do individuals

with certain characteristics have a tendency to stay in locations of certain

types? Note that this effect should be included alongside the main effects of

‘loops by individual covariate’ and ‘loops by location covariate’.

Formula:

s(x) =
∑
i∈B

voiwiI(oi = di) (39)

Usage:

myEffects <- addEffect(myEffects,

loops_resource_covar_node_covar,

node.attribute = "region",

edge.attribute = "sex")

3.4 Name: geometrically weighted OR alternating cliques: concentration

by dyadic covariate

Description: Are bandwagon effects (concentration) particularly prevalent be-

tween locations that share characteristics as encoded in a binary dyadic covari-

ate? E.g., do workers follow the moves of other workers mainly in case they go

to organisations in the same region?

These effects are interactions between the concentration effects and dyadic co-

variates; for an introduction to the underlying main effects, see geometrically

weighted concentration and concentration by alternating cliques.

Formula:

s(x) =
∑

j ̸=h∈A
ujh gcum gw(xjh), (40)

OR

s(x) =
∑

j ̸=h∈A
ujh gcum ac(xjh), (41)
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with gcum gw(y) and gcum ac(y) defined as in equations 13 and 15, respectively.

Usage:

myEffects <- addEffect(myEffects,

concentration_GW_dyad_covar_bin,

node.attribute = "sameRegion")

myEffects <- addEffect(myEffects,

concentration_AC_dyad_covar_bin,

node.attribute = "sameRegion")

3.5 Name: geometrically weighted OR alternating cliques: concentration

by individual-level binary covariate

Description: Are bandwagon effects (concentration) particularly prevalent be-

tween people that are of the same type? E.g., do male workers follow the moves

of other male workers additional to following the moves of all workers?

These effects are interactions between the concentration effects and individual-

level binary covariates; for an introduction to the underlying main effects, see

geometrically weighted concentration and concentration by alternat-

ing cliques.

Formula:

s(x) =
∑

j ̸=h∈A
gcum gw(x-wjh), (42)

OR

s(x) =
∑

j ̸=h∈A
gcum ac(x-wjh), (43)

with gcum gw(y) and gcum ac(y) defined as in equations 13 and 15, respectively.

x-wjh refers to the weight of the tie from j to h of individuals of type w. Note

that this effect only makes sense for binary relations w.

Usage:

myEffects <- addEffect(myEffects,

concentration_GW_dyad_covar_bin,

node.attribute = "sameRegion")

myEffects <- addEffect(myEffects,

concentration_AC_dyad_covar_bin,

node.attribute = "sameRegion")

3.6 Name: geometrically weighted OR alternating cliques: reciprocity by

binary dyadic covariate

Description: Is reciprocity in mobility particularly prevalent between locations

that share characteristics as encoded in a binary dyadic covariate? E.g., do
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workers move to organisations in the same region that send more workers to

ego’s origin?

These effects are interactions between the reciprocity effects and binary dyadic

covariates; for an introduction to the underlying main effects, see geometri-

cally weighted reciprocity and reciprocity by alternating cliques.

Formula:

s(x) =
∑

j ̸=h∈A
ujh xjh gmar gw(xhj), (44)

OR

s(x) =
∑

j ̸=h∈A
ujh xjh gmar ac(xhj), (45)

with gmar gw(y) and gmar ac(y) defined as in equations 24 and 26, respectively.

Note that this effect only makes sense for binary relations u.

Usage:

myEffects <- addEffect(myEffects, reciprocity_GW_dyad_covar_bin,

node.attribute = "sameRegion")

myEffects <- addEffect(myEffects, reciprocity_AC_dyad_covar_bin,

node.attribute = "sameRegion")

3.7 Name: geometrically weighted OR alternating cliques: reciprocity by

dyadic covariate

Description: Is reciprocity in mobility particularly prevalent between locations

in which the dyad is high on a dyadic covariate? E.g., do workers move to

organisations of similar size that send more workers to ego’s origin?

These effects are interactions between the reciprocity effects and binary dyadic

covariates; for an introduction to the underlying main effects, see geometri-

cally weighted reciprocity and reciprocity by alternating cliques.

Formula:

s(x) =
∑

j ̸=h∈A
ujh xjh gmar gw(xhj), (46)

OR

s(x) =
∑

j ̸=h∈A
ujh xjh gmar ac(xhj), (47)

with gmar gw(y) and gmar ac(y) defined as in equations 24 and 26, respectively.

Note that this effect generalises the above effect to continuous dyadic covariates.

Usage:
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myEffects <- addEffect(myEffects, reciprocity_GW_dyad_covar,

node.attribute = "simSize")

myEffects <- addEffect(myEffects, reciprocity_AC_dyad_covar,

node.attribute = "simSize")

3.8 Name: minimum reciprocity by individual covariate

Description: Do people reciprocate moves to other locations specifically if they

and others have a higher value on some covariate? For example, do women

move to organisations that send women to their origin organisation?

Formula:

s(x) =
∑

j<h∈A
min(zwjh, z

w
hj), (48)

where zw represents a weighted matrix representation of the mobility network

with each individual contributing to the weight of a tie by the value of covariate

w. This makes most sense in case of a binary covariate w.

Usage:

myEffects <- addEffect(myEffects,

reciprocity_min_resource_covar,

edge.attribute = "sex")

3.9 Name: loops by inflow of individuals of category w

Description: Is the tendency to stay in vs. move out of a location dependent

on the proportion of individuals of type w that enter the location? This is

especially geared towards modelling how some locations become more or less

attractive dependent on the change in composition.

Formula:

s(x) =
∑
i∈B

∑
i′∈B I(di′ = oi) wi′∑

i′∈B I(di′ = oi)
I(oi = di). (49)

Note that this effect is developed for binary covariates w.

Usage:

myEffects <- addEffect(myEffects, staying_by_prop_bin_inflow,

edge.attribute = "sex")

3.10 Name: loops of non-w by inflow of individuals of category w

Description: Is the tendency to stay in vs. move out of a location of individuals

of type non-w dependent on the proportion of individuals of type w moving into

the location? This is especially geared towards modelling how some locations
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become more or less attractive dependent on the change in composition for

particular groups. This models segregation dynamics.

Formula:

s(x) =
∑
i∈B

∑
i′∈B I(di′ = oi) wi′∑

i′∈B I(di′ = oi)
I(oi = di) (1− wi). (50)

Note that this effect is developed for binary covariates w.

Usage:

myEffects <- addEffect(myEffects, crowding_out_prop_covar_bin,

edge.attribute = "sex")

5.2.4 Undocumented effects

There is a series of effects that are implemented but not documented. This is because

they are currently under development and not sufficiently understood to recommend

their use. For the adventurous researcher, here is a list of the names of these effects

that are sometimes degenerate and generally require great care before use.

# effect functions: concentration

concentration_prop

concentration_prop_orig_cov

concentration_rankGW

concentration_norm

concentration_norm_squared

# effect functions: reciprocity

reciprocity_min_dyad_covar

# effect functions: transitivity

triad120D

triad120U

triad120C

# effect functions: endogeneous covariate based

joining_similar_avoiding_dissimilar_covar_bin

joining_similar_avoiding_dissimilar_covar_cont

avoiding_dissimilar_covar_bin

avoiding_dissimilar_covar_cont

# effect functions: other

in_weights_GW

in_weights_AC
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5.3 Modelling considerations

Model specification for mobility network models is not (yet) a very well researched

area. Thus, practical experience currently cannot guide model specification for a

large number of empirical applications. Nevertheless, there are some considerations

that a researcher can take into account.

First, theoretical knowledge about the case to which the model is applied should

be the most important determinant in specifying (especially the endogenous part

of) the model. Clear theoretical ideas about the mechanisms shaping the mobility

network under analysis should give strong indication what effects to include in a

model.

Second, it might be desirable to include statistics that are counts of cliques

of multiple observations (following the Hammersley-Clifford theorem). This ensures

that particular configurations are equally ‘preferred’ or ‘avoided’, independent of the

rest of the mobility network. Effects that satisfy the Hammersley-Clifford condition

include all that end in ‘ basic’ and ‘ GW’; furthermore the effects ‘loops’, ‘present

relations’, ‘loops by indegree’, and ‘̀ındegree concentration exponent’ for α = 2 fulfil

the Hammersley-Clifford condition. Readers interested in the underlying reasoning

are referred to Besag (1974).

Third, in case direct interpretation of parameters on an individual level is desired,

effects that offer clear change statistics might be preferable. These are basic effects,

as well as effects that work with ‘min’. To a lesser extent, ‘GW’ effects offer a clear

individual-level interpretation.

Fourth, if the modelled data is a sample of a population, effects that are sample

size consistent might be preferred, to ensure results extend to the population under

analysis.

5.3.1 Modelling column marginalals

In some cases, column marginals of the data are exogenously determined, for ex-

ample, when organisations have a certain demand for personnel and hire until each

position is filled. In these cases, it might not be meaningful trying to model column

marginals by ‘normal’ predictors. In these cases, Block et al. (2022) suggest two

options. One is including the log of the empirical column marginals as a ‘covariate

alter’ effect. The second is modelling the size of each destination by a fixed effect.
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6 The estimation algorithm

The estimation algorithm for MoNAn makes use of Markov Chain Monte Carlo

(MCMC) methods. These are outlined in Block et al. (2022), and are directly

adopted from the procedure for ERGMs introduced in Snijders (2002). Readers

interested in the method are referred to Snijders (2002), especially Section 7 and the

appendix, and the literature cited therein.

The algorithm proceeds in three phases. In each phase likely outcomes of a mo-

bility network under a specified parameter vector θ are simulated. These simulations

are used for different purposes in each phase. The simulations use MCMC proce-

dures, in which networks are simulated by changing individual observations one at

a time – this is why it is a ‘chain’, as each simulated outcome differs at most by

one observation from the previous simulated outcome. To get independent draws of

simulated networks, many simulation steps are necessary to ensure that subsequent

draws are not highly correlated.

Details of the estimation algorithm are outlined below. For default values on all

options, see the help-files and Section 6.5.

6.1 The 3 phases

In the first phase of the estimation, networks are simulated using the initial values

of θ. The initial values are specified in the estimation function (Section 7). These

simulated networks are used to assess the sensitivity of the statistics s(x) to the

parameters θ, which guides the size of the individual updating steps in phase 2.

In the second phase, θ̂ is estimated by iterative updating. To that end, one

realisation of the mobility network under the current θ̂n is simulated and compared

to the empirically observed network. The deviation of the different statistics between

simulated and observed network, together with the sensitivity calculated in phase 1

and a user-defined step-size, determine the updated next value θ̂n+1. These updating

steps are repeated with decreasing step-size, to approximate the maximum likelihood

estimate (MLE).

The third phase checks whether simulations using the finally obtained value θ̂

from phase 2 reproduce the statistics of the observed network w.r.t. the included

effects. This is called a convergence check.

6.2 Burn-in, thinning, and number of iterations

In each phase, the user has the option to specify the burn-in, the thinning, and the

number of iterations. In phase 2, the number of iterations varies by sub-phase, as

explained in section 6.4.2.

In each phase, the burn-in specifies the number of simulation steps the algorithm

makes before taking the first draw of a simulated network. The thinning determines

the number of simulation steps between consecutive draws. As a general rule, the
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burn-in and thinning should be a multitude of the number of observations, with the

burn-in being larger than the thinning.

The number of iterations determines how many draws are taken to execute the

respective phase.

In specifying each of the parameters burn-in, thinning, and number of iterations,

choosing a value excessively large will mean the estimation takes longer than nec-

essary and consumes more energy. Choosing a value too small leads to different

problems depending on the phase.

The smallest damage can be done in phase 1. In case burn-in, thinning, or

number of iterations is too small, the sensitivity of the statistics to the parameters

will be imprecisely estimated. This might result in more steps in phase 2 being

necessary. However, note that the sensitivity will be evaluated at the initial values

of θ, therefore, these values might not be ideal at later values of θ during phase 2

anyway. Nevertheless, values way too small can result in an R error ‘matrix not

invertible’ that will lead to the estimation being aborted.

Too small values for the number of iterations in phase 2 will result in the up-

dating of parameters being terminated before the final (converged) value is reached.

However, it is not unusual that more than one run of estimations is necessary. Too

small values in burn-in and thinning will result in imprecise values in the compari-

son between simulated and observed networks (especially the thinning is important

here). This will happen because the simulation draw will represent a network guided

by a mix of the previous and current values of θ, since too few steps mean that the

current state does not yet reflect a draw under the current values of θ. In the worst

case this can lead to the updating steps ‘overshooting’ the target of the parameter it

is meant to reach, which can lead to the algorithm never converging. If the same val-

ues for burn-in and thinning are chosen as in phase 3, the functions extractTraces

and autoCorrelationTest can be used to check whether the thinning and burn-in

is adequate (see Sections 8 and 10.1).

Too small values for the number of iterations in phase 3 might lead to erroneous

conclusions regarding the convergence of the model. Too small values for the burn-

in can lead to the early simulation draws being influenced by the initial state of

the simulations. Too small values for the thinning can lead to a high correlation

between subsequent draws that mean they will not be independent anymore. The

functions extractTraces and autoCorrelationTest can be used to check whether

the thinning and burn-in is adequate (see Sections 8 and 10.1).

6.3 Choosing the proposal function

In the simulations determining the updating steps, two ways can be chosen. The

multinomial proposal function considers more options for the next step and, thus,

leads to better ‘mixing’ of the chain. However, each step requires more calculations

and is accordingly slower. The alternative proposal only suggests one option for the

next simulated state, which means it is quicker to execute but more simulation steps
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are necessary until the correlation between subsequent draws is low enough.

There is currently insufficient experience to make a clear recommendation when

to use which option.

6.4 Other options

6.4.1 Allow loops

Is staying in the current location an option for individuals in the data?

6.4.2 Number of sub-phases in phase 2

Phase 2 is executed over a number of sub-phases, where each sub-phase has a smaller

gain and more steps. The idea is that towards the end of the algorithm updating

steps get more and more precise. The standard value for the number of sub-phases is

four. However, if this is not the first run, but only one to improve convergence, only

one or two sub-phases might be used, since only small updating steps are desired.

6.4.3 Number of initial iterations in phase 2

This parameter sets the number of iteration in the first sub-phase of phase 2, i.e.,

the number of updating steps. The number of iterations increases by a factor of 1.75

from sub-phase to sub-phase. Thus, choosing a large value and many sub-phases

will result in very long computation times.

6.4.4 Initial gain

In the comparison of simulated to observed networks, the deviations suggest the size

of an updating step. This is down weighted by the gain parameter to guard against

overshooting in the updates. In each sub-phase, the value of gain is halved to ensure

smaller and smaller updating steps when coming closer to the target.

6.4.5 Gain after phase 1

After phase 1, it is possible to make an updating step based on the initial simulations,

which should accelerate convergence (slightly). The size of the updating step can

be determined here, with values closer to zero being conservative, while values close

to one are courageous.

6.5 The R function monanAlgorithmCreate

In the creation of the algorithm, all previously mentioned factors can be determined

by the user. Most have default values; however, they might not be useful for all

applications.

Function name: monanAlgorithmCreate
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Arguments:

• state. necessary. A monan state object that contains all relevant information

about the outcome in the form of an edgelist, the nodesets, and covariates.

• effects. necessary. An effect object that specifies the model.

• multinomialProposal. optional. How should the next possible outcome in

the simulation chains be sampled? If TRUE, fewer simulation steps are needed,

but each simulation step takes considerably longer. Defaults to FALSE.

• burnInN1. optional. The number of simulation steps before the first draw

in Phase 1. A recommended value is at least n Individuals * n locations if

multinomialProposal = F, and at least n Individuals if multinomialProposal

= TRUE which is set as default.

• thinningN1. optional. The number of simulation steps between two draws in

Phase 1. A recommended value is at least 0.5 * n Individuals * n locations if

multinomialProposal = F, and at least n Individuals if multinomialProposal

= TRUE which is set as default.

• iterationsN1. optional. The number of draws taken in Phase 1. A recom-

mended value is at least 4 * n effects which is set as default. If the value is

too low, there will be an error in Phase 1.

• gainN1. optional. The size of the updating step after Phase 1. A conservative

value is 0, values higher than 0.25 are courageous. Defaults to 0.1.

• burnInN2. optional. The number of simulation steps before the first draw

in Phase 1. A recommended value is at least n Individuals * n locations if

multinomialProposal = F, and at least n Individuals if multinomialProposal

= TRUE which is set as default.

• thinningN2. optional. The number of simulation steps between two draws in

Phase 2. A recommended value is at least 0.5 * n Individuals * n locations if

multinomialProposal = F, and at least n Individuals if multinomialProposal

= TRUE which is set as default.

• initialIterationsN2. optional. The number of draws taken in subphase 1

of Phase 2. For first estimations, a recommended value is around 50 (default

to 50). Note that in later sub-phases, the number of iterations increases. If

this is a further estimation to improve convergence, higher values (100+) are

recommended.

• nsubN2. optional. Number of sub-phases in Phase 2. In case this is the first

estimation, 4 sub-phases are recommended and is set as default. If convergence

in a previous estimation was close, then 1-2 sub-phases should be enough.
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• initGain. optional. The magnitude of parameter updates in the first sub-

phase of Phase 2. Values of around 0.6 (default) are recommended.

• burnInN3. optional. The number of simulation steps before the first draw in

Phase 3. A recommended value is at least 3 * n Individuals * n locations if

multinomialProposal = F, and at least 3 * n Individuals if multinomialPro-

posal = TRUE which is set as default.

• thinningN3. optional. The number of simulation steps between two draws in

Phase 3. A recommended value is at least n Individuals * n locations if multi-

nomialProposal = F, and at least 2 * n Individuals if multinomialProposal =

TRUE which is set as default. In case this value is too low, the outcome might

erroneously indicate a lack of convergence.

• iterationsN3. optional. Number of draws in Phase 3. Recommended are at

the very least 500 (default). In case this value is too low, the outcome might

erroneously indicate a lack of convergence.

• allowLoops. optional. Logical: can individuals/resources stay in their origin?

Usage:

myAlg <- monanAlgorithmCreate(state = myState,

effects = myEffects,

multinomialProposal = FALSE)
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7 Estimating the model

The estimation of MoNAn combines and uses the R objects defined in the previous

sections. This section discusses additional options that can be used in the estimation,

in particular using non-default starting values.

7.1 Pre-estimation

MoNAn uses MCMC methods for parameter estimation. Standard statistical esti-

mation methods cannot be used, because assumptions of independent observations

are systematically violated (unless no endogenous effects are included). However,

estimation of the model under the (wrong) assumption of independent observations

usually provides parameters that are closer to the MLE than näıve guesses. There-

fore, estimating a multinomial logit model with MoNAn effects as model parameters

can give good starting values for a proper MoNAn estimation, which considerably

improves chances of model convergence after the first run. We refer to parameters

estimated under the assumption of independent observations as the pseudo-MLE

estimates (Frank and Strauss, 1986).

To obtain such estimates, statistics for a multinomial logit model needs to be

calculated from the data using the following function. One example of an estimation

routine is provided below.

Function name: getMultinomialStatistics

Arguments:

• state. necessary. A processState.monan object that stores all information to

be used in the model.

• effects. necessary. An effects object for which the statistics of a multinomial

model should be calculated.

Usage:

myStatisticsFrame <- getMultinomialStatistics(

state = myState,

effects = myEffects)

Additional script to get pseudo-likelihood estimates, requiring the dfidx and mlogit

package:

library(dfidx)

library(mlogit)

my.mlogit.dataframe <- dfidx(myStatisticsFrame,

shape = "long",

choice = "choice")
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colnames(my.mlogit.dataframe) <-

gsub(" ", "_", colnames(my.mlogit.dataframe))

IVs <- (colnames(my.mlogit.dataframe)[2:(ncol(myStatisticsFrame)-2)])

f <- as.formula(paste("choice ~ 1 + ",

paste(IVs, collapse = " + "), "| 0"))

my.mlogit.results <- mlogit(formula = eval(f),

data = my.mlogit.dataframe,

heterosc = F)

summary(my.mlogit.results)

initEst <- my.mlogit.results$coefficients[1:length(IVs)]

7.2 The estimation function

The central step in a MoNAn analysis is the estimation. Here, the information

from the data (state), the model specification (effects), and the algorithm is used

to estimate parameters that represent the observed mobility network. Since most

important modelling decisions have been taken in the previous steps, running an esti-

mation is rather straightforward. Estimation options (parallel computing, returning

simulated networks, and starting values) are discussed in Section 7.4.

Function name: monanEstimate

Arguments:

• ans. necessary. The results object resulting from an estimation with “mo-

nanEstimate”

• state. necessary. A monan state object that contains all relevant information

about the outcome in the form of an edgelist, the nodesets, and covariates.

• effects. necessary. An effect object that specifies the model.

• algorithm. necessary. An object that specifies the algorithm used in the

estimation.

• initialParameters. optional. Starting values for the parameters. Using

starting values, e.g., from a multinomial logit model (see getMultinomial-

Statistics()) increases the chances of model convergence in the first run of

the estimation considerably.
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• prevAns. optional. If a previous estimation did not yield satisfactory con-

vergence, the outcome object of that estimation should be specified here to

provide new starting values for the estimation.

• parallel. optional. Computation on multiple cores?

• cpus. optional. Number of cores for computation in case parallel = TRUE.

• verbose. optional. Logical: display information about estimation progress in

the console?

• returnDeps. optional. Logical: should the simulated values of Phase 3 be

stored and returned? This is necessary to run GoF tests. Note that this might

result in very large objects.

Usage:

myResDN <- monanEstimate(

state = myState,

effects = myEffects,

algorithm = myAlg,

parallel = TRUE, cpus = 4,

verbose = TRUE,

returnDeps = TRUE

)

# In case pseudo-likelihood estimates have been

# obtained previously, this can be specified by

myResDN <- monanEstimate(

state = myState,

effects = myEffects,

algorithm = myAlg,

initialParameters = initEst,

parallel = TRUE, cpus = 4,

verbose = TRUE,

returnDeps = TRUE

)

# If this is not the first estimation run of the model

# previous results can be included by

myResDN <- monanEstimate(

state = myState,

effects = myEffects,

algorithm = myAlg,

prevAns = myResDN,

parallel = TRUE, cpus = 4,

42



verbose = TRUE,

returnDeps = TRUE

)

7.3 Checking model convergence

A crucial part after running an estimation is to check whether the model has con-

verged. Model convergence means that the simulations using the finally obtained

value θ̂ from phase 2 reproduce the statistics of the observed network w.r.t. the

included effects. These checks are carried out in phase 3 of the estimation.

Convergence statistics are calculated by taking the difference between the statis-

tics underlying each effect for the observed network, and for the average of all simu-

lated networks in phase 3. This difference is normalised by the standard deviation of

the statistic values over the simulations (effect-by-effect), see Snijders (2002). Small

values in the convergence statistics mean that the average simulated network is very

close in terms of the effect statistics to the observed network. Thus, small values for

all statistics mean that the model has converged and the parameters represent the

modelled data.

Ideally, all convergence statistics should be below an absolute value of 0.1 (that

is, on average the simulations should be less than 0.1 sd’s away from the observation

in terms of all statistics). In practise, the final column when printing a results

object shows the convergence statistics for the respective effects. Finding the highest

(worst) absolute convergence value can be done by:

max(abs(myResDN$convergenceStatistics))

If this value is above 0.1, the model has not converged and the parameters are

not reliable. Further estimation runs are necessary before the parameters can be

interpreted in a valid way (see below and Section 10.1)

7.3.1 What if my model did not converge?

There are many reasons why a model can suffer from convergence problems, in-

cluding the model specification or choice of parameters in the model algorithm. In

Section 10.1 the most common problems concerning model convergence are discussed

alongside potential solutions.

7.4 Estimation options

7.4.1 Initial parameters and prevAns

Since the estimation algorithm iteratively updates the parameters to get closer and

closer to the MLE, the better the initial values are, the quicker the MLE is reached.

Choosing good starting values can have a substantial impact on the time it takes

and the number of estimation runs needed until the model is converged. Without
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specifying any starting values, the estimation algorithm starts at setting all initial

parameters to zero.

Initial parameters that are estimated using (much faster) pseudo-MLE proce-

dures often get close to the MLE. How they are obtained is discussed in Section

7.1. In the monanEstimate function they are included with the initialParameters

option.

In case a model was already estimated but did not reach convergence, the results

object from the previous estimation run can be used as new starting values. In

the monanEstimate function results from a previous estimation are included with

the prevAns option. Another advantage of using the prevAns option is that the

calculations necessary for phase 1 can be extracted from the results object, further

speeding up the estimation.

7.4.2 returnDeps

During phase 3 of the estimation, a number of mobility networks under the final

parameters from the estimation are simulated. How many networks are generated

is determined by the iterationsN3 option in monanAlgorithmCreate. By default,

not the entire networks are stored but only relevant information that is used to

calculate convergence. This is to avoid generating overly large results objects.

However, the complete networks resulting from each simulation can be stored in

the results object, setting returnDeps = TRUE. Storing the simulation outcomes is

necessary in case a users wants to do some further checking of the algorithm, score

tests, or goodness of fit tests (see Section 8). Each of these tests uses simulated

networks under the model. Thus, for more advanced use of MoNAn returning the

simulated networks might be the common option.

7.4.3 Parallel computing

All phases can be executed distributed over multiple cores. Especially for phase 3,

this reduces the time proportional by the number of cores. In phase 2, multiple

sub-phases are run in parallel and resulting parameter values are averaged at the

end. There is a limit to how much this speeds up reaching convergence, but there

is insufficient experience to give clear guidance on the number of cores. However,

for more cores the initial gain (size of the updating steps after each draw) can be

chosen higher, which should speed up convergence.
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8 Tests and diagnostics

After a completed estimation, a set of diagnostics is available to check the estimated

model. These concern checking the algorithm, the model specification regarding

the inclusion of additional effects, and overall goodness of fit concerning auxiliary

statistics.

8.1 Checking the algorithm

The primary metric whether the parameters from a model estimation are reliable are

the convergence statistics (see Section 7.3). However, there are additional tools that

give insight into the performance of the estimation algorithm. These insights can

be used to understand why model convergence might be problematic (see Section

10.1 for guidance what to do), as well as further assurance of proper behaviour of

the algorithm beyond convergence statistics.

Two functions are available to check the modelling algorithm. The first assesses

the distance between two subsequent draws of simulations in phase 3, i.e., the auto-

correlation. The function simply returns the average proportion of individuals that

are in the same location in two consecutive draws of simulated networks. Generally,

lower values are better, while values of above 0.4 can be problematic.

Assessing the autocorrelation uses the simulations of the network under the esti-

mated model that are generated in phase 3 of the estimation algorithm. As such, the

autocorrelation test function only works if deps = TRUE (store networks generated

in phase 3) is specified for the estimation.

Function name: autoCorrelationTest

Arguments:

• ans. necessary. The results object resulting from an estimation with “mo-

nanEstimate”

Usage:

autoCorrelationTest(ans = myResDN)

The second function to assess the modelling algorithm looks at the values of

the statistics underlying each effect over the course of the simulations in phase 3.

To this end, the statistic value for each included effect (e.g., same covariate region,

or reciprocity min) is calculated for each simulated network. In the ideal case, the

values are randomly scattered around the target value (i.e., the value of the observed

network) in a normally looking fashion. If no trends over the course of all simulations

are discernible, and there is no obvious relation between the values of consecutive

simulation draws, the algorithm ‘mixes’ well.
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The extraction of traces uses the simulations of the network under the estimated

model that are generated in phase 3 of the estimation algorithm. As such, the extract

traces function only works if deps = TRUE (store networks generated in phase 3) is

specified for the estimation.

Function name: extractTraces

Arguments:

• ans. necessary. The results object resulting from an estimation with “mo-

nanEstimate”

• effects. necessary. The effects object used in the estimation

Usage:

traces <- extractTraces(ans = myResDN,

effects = myEffects)

plot(traces)

8.2 Checking the specification: score-type tests

Given the large computational burden of estimations in MoNAn, it is not practical

to engage in many standard model selection practises. One alternative for forward

model selection is using score-type tests.

In score-type tests we define a candidate effect that a user considers to addition-

ally include in the model after an estimation. Score-type tests are used to check

whether the network-level statistics of a candidate effect is represented well by the

model even without the effect being explicitly modelled. If the specification of an

estimated model can reproduce the statistic of a candidate effect, this is a strong

indication that including the effect would not be significant. On the other hand,

if the simulated networks differ substantially from observation regarding the statis-

tics of the candidate effect, it suggests that including this effect would result in a

significant parameter estimate.

Score-type tests use the simulations of the network under the estimated model

that are generated in phase 3 of the estimation algorithm. As such, the score-type

test function only works if deps = TRUE (store networks generated in phase 3) is

specified for the estimation.

Function name: scoreTest

Arguments:

• ans. necessary. The results object resulting from an estimation with “mo-

nanEstimate”

• effects. necessary. An effects object in which the non included effects that

should be tested are specified
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Usage:

myEffects2 <- createEffects(myState) |>

addEffect(transitivity_min)

test_ME.2 <- scoreTest(ans = myResDN,

effects = myEffects2)

test_ME.2

8.3 Goodness of fit

Goodness of fit (gof) testing in network models in its most usual form checks whether

a network model can reproduce un-modelled network characteristics (Hunter et al.,

2008), often on a more aggregate (network) level (Snijders and Steglich, 2015). Such

characteristics include degree distributions, triad census, community structure, path

lengths etc.

This type of gof-testing is equally available in MoNAn. Gof tests use the simula-

tions of the network under the estimated model that are generated in phase 3 of the

estimation algorithm. As such, the gof function only works if deps = TRUE (store

networks generated in phase 3) is specified for the estimation.

Function name: monanGOF

Arguments:

• ans. necessary. The results object resulting from an estimation with “mo-

nanEstimate”

• gofFunction. necessary. A gof function that specifies which auxiliary outcome

should be, e.g., ”getIndegree” or ”getTieWeights”

• lvls. necessary. The values for which the gofFunction should be calculated /

plotted

Usage:

myGofIndegree <- monanGOF(ans = myResDN,

gofFunction = getIndegree,

lvls = 1:100)

plot(myGofIndegree, lvls = 20:70)

8.3.1 Implemented auxiliary functions

Currently only two of-the-shelf functions for gof testing are implemented in MoNAn.

These are:
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Function name: getIndegree

Description: Calculates the weighted indegree distribution of all locations in the

network. The weighted indegree is simply the column sum of the mobility table.

Function name: getTieWeights

Description: Extracts the distribution of tie weights in the mobility network.

However, programming of auxiliary functions for MoNAn is fairly straightforward for

experienced R users. The major obstacle is understanding where the relevant infor-

mation is stored in the state (raw data) and internal cache (transformed networks).

From that point, standard network functions implemented in R can be used. Gof

auxiliary functions implemented in R have the following form:

gofFunction <- function(state,

dep.var, lvls){

# some function of state

# e.g. extracting the degree

# distribution

}
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9 Simulation

For any given parameter θ, two defined nodesets, and potentially covariates, it is

possible to simulate mobility networks. The primary use of simulated data lies in

goodness-of-fit or score-type testing; however, this is usually done using simulations

from phase 3 of an estimation with parameter values determined by an estimation.

However, there are further uses to simulating data with using values of θ that

are set by a researcher. One use is the extrapolation of macro-level consequences de-

pending on micro-level changes in parameters. The simplest application of this idea

is setting the parameter related to one effect to zero and examining the changes in

macro-level outcomes. This aims to answer how much a network-level characteristic

(e.g., segregation) is influenced by micro-level tendencies of individual action (e.g.,

avoidance of the same location as dissimilar others). One example of this application

is Block (2023). Other motivations to simulate data (among many) are to improve

the understanding of model behaviour, building toy models for theory development,

or developing new effects.

The specification of a simulation depends on the same factors as the simulations

in the estimation. Thus, for a deeper introduction on how to specify the simulation

parameters allowLoops, burnin, thinning, and nSimulations, see Section 6.

Function name: monanSimulate

Arguments:

• state. necessary. A monan state object that contains all relevant information

about nodesets, and covariates. Further, an edgelist of the dependent variable

needs to be specified with the initial mobility network as starting value for the

simulation. For a large enough burnin, any initial mobility network is allowed.

• effects. necessary. An effects object that specifies the model.

• parameters. necessary. The parameters associated with the effects that shall

be used in the simulations.

• allowLoops. necessary. Logical: can individuals/resources stay in their ori-

gin?

• burnin. necessary. The number of simulation steps that are taken before the

first draw of a network is taken. A number too small will mean the first draw

is influenced by the initially specified network. A recommended value for the

lower bound is 3 * n Individuals * n locations.

• thinning. necessary. The number of simulation steps that are taken be-

tween two draws of a network. A recommended value for the lower bound is

n Individuals * n locations.

• nSimulations. necessary. The number of mobility networks to be simulated.
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Usage:

mySimDN <- monanSimulate(state = myState,

effects = myEffects,

parameters = c(2, 1, 1.5,

0.1, -1, -0.5),

allowLoops = TRUE,

burnin = 45000,

thinning = 15000,

nSimulations = 10

)
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10 Problems and errors

10.1 Model does not converge

One of the most common problems for this kind of model is that it might be diffi-

cult to reach convergence, especially for endogenous parameters. This might have

different reasons and requires different solutions.

The easiest case is that there are simply not enough iterations in phase 2 in the

first estimation run. The solution is to re-run the estimation with the results of the

first estimation as starting values (see Section 7.4.1). Second (or later) estimations

can use fewer sub-phases and adjust the gain parameter (see 6). As long as the

convergence improves with every run, re-running the model with improved starting

values is the best strategy to work towards a converged model. If this does not work,

different issues might stop the model from converging.

In case the convergence statistics are very large (> 3) and do not decrease

rapidly in subsequent estimations (or even increase), this points to a problem in

the model specification. For example, using endogenous statistics that are prone to

near-degeneracy will lead to this problem. Candidate effects that are known to lead

to near-degeneracy in some cases include ‘concentration basic’, ‘reciprocity basic’,

‘transitivity basic’, and ‘in weights exponent’. In these cases, adjusting the model

specification to use ‘ GW’ effects or effects based on proportions should help.

A second specification problem that can lead to convergence problems of the

large kind are highly co-linear effects. When two effects model (almost) the same

pattern, this can become apparent in problems reaching convergence. Co-linearity

of effects can be checked using the covariance matrix as stored in a monan.results

object under myResDN$covarianceMatrix.
In case convergence is small (< 1), but not small enough (> 0.1), a few problems

might be present. First, phase 3 might not have enough iterations or a too small

burn-in or thinning. The functions extractTraces and autoCorrelationTest can

be used to check whether the thinning and burn-in is adequate. The graphs produced

by extractTraces should show points normally scattered around a constant value

on the y-axis. A trend at the beginning of the plots indicates too low burn-in, trends

over the entire course of the plot indicate too low thinning. A different way to check

for this is autoCorrelationTest. The result should be low, preferably below 0.3

(but this is just a rule of thumb). For values above 0.5, the user should consider

increasing the thinning parameter. If thinning, burn-in, and the number of iterations

in phase 3 are large enough, the problem lies in phase 2.

In case parameters between subsequent runs of the model change very little,

increasing the initial gain can help to allow the algorithm to make larger updating

steps. Conversely, if parameters change a lot but convergence does not improve,

decreasing the gain can help. It might also be that the burn-in and thinning values

are too low (see Section 6.2). To check whether this is the case, the user can

adjust these values to match the burn-in and thinning parameters in phase 3 and

see whether they fulfil the criteria outlined in the previous paragraph.
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10.2 Non-invertible matrix

The error message referencing a non-invertible matrix usually happens at the end

of phase 1 or phase 3. This can be the case if the number of iterations in phase

1 or phase 3 is too low. This can lead to the inversion of the covariance matrix

not being possible and more iterations are needed. The second possible cause can

be highly co-linear effects. When two effects model (almost) the same pattern,

this can become apparent in problems inverting the covariance matrix. Check-

ing covariance between effects can be done by looking at the covariance matrix at

resultsObject$covarianceMatrix. This requires updating the model specification

to exclude one of the highly co-linear effects.

10.3 Other errors

Many other errors can come from mistakes in specifying the data, or state. They

might only become apparent when running the estimation, since the estimation

function might try to access data that does not exist. Carefully going through the

preparation of the data and making sure no typos are present might be the best

option to solve these problems.

For errors that cannot be dealt with this way, contacting the package maintainer

is a last option.
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B Index of R functions

addEffect, 15

autoCorrelationTest, 45

createEffects, 15

dyadicCovar, 13

extractTraces, 46

getMultinomialStatistics, 40

mobilityData, 9

monadicCovar, 13

monanAlgorithmCreate, 37

monanDataCreate, 14

monanDependent, 12

monanEdges, 11

monanEstimate, 41

monanGOF, 47

monanNodes, 11

monanSimulate, 49

myOutcomeObjects, 9

scoreTest, 46
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C Changes compared to earlier versions

Version 1.1.0, 19 Sep 2024

• Various new effects with alternating cliques.

• Release of new package version to CRAN.

Version 1.0.0, 13 Apr 2024

• The cache is now automatically created and hidden from the user.

• Functions names of all core functions are streamlined and simplified, often in

wrapper functions.

• Effects are now created in two successive steps, by createEffects and addEffects.

• Parallelisation of Phase 1.

• If returnDeps = TRUE in the estimation, the returned simulations are much

slimmer, only containing the simulated edgelist.

• New print functions for state, and effects.

• Various new effects.

• Release of new package version to CRAN.

Version 0.1.3, 05 Feb 2024

• The ”dependentVariable” is now automatically detected and does not need to

be specified by the user in all functions.

• Further tests of compatibility and improved error messages in the process of

creating the data.

• Various new effects.

• Implemented framework to test new effects.

• Release of new package version to CRAN.

Version 0.1.2, 30 Aug 2023

• Update of the documentation and manual.

• Renaming of gofDistributionNetwork to gofMobilityNetwork.

• Release of the package to CRAN
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Version 0.1.1, 15 Aug 2023

• Update of the documentation.

Version 0.1.0, 02 Aug 2023

• First release.
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